Optimization of Indoor Navigation Using the A Algorithm and Adaptive Grid (Gridadapte) for Efficient Pathfinding

Authors

  • Asia Leny Ritonga Universitas Budi Darma Author
  • Ega Fransiska Universitas Budi Darma Author
  • Hafidz Afdillah Universitas Budi Darma Author
  • Johan Alfredo Nainggolan Universitas Budi Darma Author
  • Rahmad Imam Sobari Universitas Budi Darma Author
  • Sony Bahagia Sinaga STMIK Mulia Darma Author

Keywords:

A* Algorithm, Adaptive Grid, Gridadapte, Indoor Navigation, Pathfinding, Grid-Based Mapping, Heuristic Search, Computational Efficiency, Robotics, Location-Based Services

Abstract

Optimal path navigation in indoor environments is a crucial problem in the development of robotic systems and location-based services due to complex spatial structures, the presence of obstacles, and limited available pathways. The A* algorithm, as a heuristic-based pathfinding method, is widely used; however, its performance degrades on high-resolution grid maps because of the increasing number of nodes that must be explored. This study proposes the integration of the A* algorithm with an adaptive grid simplification method (Gridadapte) to improve pathfinding efficiency without sacrificing route quality. The research methodology includes grid-based indoor map modeling, the application of Gridadapte to reduce cell density in low-obstacle areas, and the implementation of the A* heuristic function for optimal path search. Performance evaluation is conducted through simulations on several indoor map scenarios by comparing conventional A* and Gridadapte-based A* in terms of the number of explored nodes, path length, and computation time. Simulation results show that the proposed approach significantly reduces the number of search nodes by 30–45% and accelerates computation time by 25–40% compared to A* on regular grids, while the resulting path length remains optimal and does not experience a significant increase. These findings indicate that Gridadapte is effective in reducing the A* search space while preserving the topological structure of the environment. Therefore, the combination of A* and Gridadapte is proven to enhance both the efficiency and accuracy of pathfinding in complex indoor environments. This approach has strong potential for application in autonomous robotic systems, smart building guidance systems, and location-based Internet of Things (IoT) applications in indoor settings such as hospitals, campuses, and shopping malls.

References

Maulana, A. A., & Wijanarto, W. (2019). Implementasi Algoritma A* Dalam Aplikasi Berbasis Web untuk Menemukan Rute Terpendek sebagai Navigasi Peta Digital Indoor. Creative Information Technology Journal, 5(1), 1-13.

Dalem, I. B. G. W. A. (2018). Penerapan algoritma A*(Star) menggunakan graph untuk menghitung jarak terpendek. Jurnal RESISTOR (Rekayasa Sistem Komputer), 1(1), 41-47.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.

Russell, S., & Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.

Botea, A., Müller, M., & Schaeffer, J. (2004). Near optimal hierarchical path-finding. Journal of Game Development, 1(1), 7–28.

Yap, P. (2002). Grid-based path-finding. Proceedings of the Canadian Conference on Artificial Intelligence, 44–55.

Siagian, E. R., Rajagukguk, D. M. R., & Panjaitan, M. I. (2025). Optimizing Campus Promotion Routes Through the Application of Dijkstra’s Algorithm. Pascal: Journal of Computer Science and Informatics, 2(02), 115-122.

Li, J., Harabor, D., Stuckey, P. J., Ma, H., & Koenig, S. (2019, July). Symmetry-breaking constraints for grid-based multi-agent path finding. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 6087-6095).

Purnama, S., Megawaty, D. A., & Fernando, Y. (2018). Penerapan Algoritma A Star Untuk Penentuan Jarak Terdekat Wisata Kuliner di Kota Bandarlampung. Jurnal teknoinfo, 12(1), 28-32.

Sturtevant, N. (2012). Benchmarks for grid-based pathfinding. IEEE Transactions on Computational Intelligence and AI in Games, 4(2), 144–148.

Liu, L., Zhang, X., & Wang, Y. (2020). Indoor navigation and path planning using grid-based algorithms. Sensors, 20(12), 1–20.

Zhang, X., & Li, Y. (2019). Efficient indoor navigation using adaptive grid maps. ISPRS International Journal of Geo-Information, 8(3), 115.

Wahyuni, F. S., & Mantja, S. N. (2016). Penerapan algoritma A* untuk pencarian rute terdekat pada permainan berbasis ubin. Jurnal Teknologi Informasi, 8(2), 168–172.

Roihan, M. (2024). Penerapan algoritma A* untuk pencarian rute terpendek dalam navigasi GPS. Jurnal Informatika, 10(1), 45–53.

Prasetyo, A. C., Arnandi, M. P., Hudnanto, H. S., & Setiaji, B. (n.d.). Perbandingan algoritma A dan Dijkstra dalam menentukan rute terdekat.* 36–46.

Downloads

Published

22-01-2026

How to Cite

Ritonga, A. L., Fransiska, E., Afdillah, H., Nainggolan, J. A., Sobari, R. I., & Sinaga, S. B. (2026). Optimization of Indoor Navigation Using the A Algorithm and Adaptive Grid (Gridadapte) for Efficient Pathfinding. Pascal: Journal of Computer Science and Informatics, 3(01), 13-18. https://jurnal.devitara.or.id/index.php/komputer/article/view/301

Most read articles by the same author(s)

Similar Articles

1-10 of 24

You may also start an advanced similarity search for this article.