Design and Evaluation of an Adaptive Traffic Signal Control System Based on Mamdani Fuzzy Logic

Authors

  • Nova Elisa Universitas Budi Darma Author
  • Ira C Ira C Universitas Budi Darma Author
  • Sofia Verawati Universitas Budi Darma Author
  • Angelica Gracia M Universitas Budi Darma Author
  • Orlan R Orlan R Universitas Budi Darma Author

Keywords:

Mamdani Fuzzy Logic, Adaptive Traffic Signal, Signal Control, Vehicle Density, Intelligent Transportation Systems

Abstract

Traffic congestion in urban areas has become an increasingly complex problem due to the rapid growth in the number of vehicles and the limitations of fixed-time traffic signal control systems. Conventional approaches are unable to respond dynamically to fluctuations in traffic density, often resulting in high waiting times and reduced intersection capacity. This study aims to design and evaluate an adaptive traffic signal control system based on Mamdani fuzzy logic to improve intersection control performance. The developed system uses two input variables, namely the number of vehicles on the main approach and the number of vehicles on the competing approach, and one output variable representing the green signal duration. Membership functions are modeled using triangular and trapezoidal shapes, while the rule base is structured in the form of a Fuzzy Associative Memory (FAM). The inference process is performed using the Mamdani method, and the crisp output value is obtained through centroid defuzzification. Performance evaluation is conducted under five traffic density scenarios representing low to highly congested conditions by comparing the fuzzy-based system with a fixed-time control system. The performance indicators used include average vehicle waiting time, queue length, and intersection throughput. The experimental results show that the fuzzy-based system is able to reduce average waiting time by 18–25% and increase throughput by 15–20%, particularly under moderate to congested traffic conditions. These findings demonstrate that Mamdani fuzzy logic can produce more adaptive, responsive, and efficient signal control compared to conventional methods, indicating its strong potential as an effective solution for the development of intelligent transportation systems in urban environments.

References

Azzahra, E. D., & Yudono, M. A. S. (2025). PENGEMBANGAN SISTEM DETEKSI KEBAKARAN HUTAN BERBASIS ESP32 DAN PANEL SURYA MENGGUNAKAN LOGIKA FUZZY UNTUK PEMANTAUAN MELALUI TELEGRAM. Teknika STTKD: Jurnal Teknik, Elektronik, Engine, 11(1), 111-122.

Prasetya, R. P. (2020). Implementasi fuzzy mamdani pada lampu lalu lintas secara adaptif untuk meminimalkan waktu tunggu pengguna jalan. Jurnal Mnemonic, 3(1), 24-29.

Balaji, P. G., & Srinivasan, D. (2011). Type-2 fuzzy logic–based urban traffic management. Engineering Applications of Artificial Intelligence, 24(1), 12–22.

https://doi.org/10.1016/j.engappai.2010.06.006

Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent & Fuzzy Systems, 2(3), 267–278.

ElHadidy, M., & Mostafa, M. (2019). Fuzzy-based intelligent traffic light scheduling for smart cities. International Journal of Advanced Computer Science and Applications, 10(7), 355–363.

https://doi.org/10.14569/IJACSA.2019.0100746

Hou, R., Wang, Q., Wang, J., Lu, Y., & Kim, J. (2012). A fuzzy control method of traffic light with countdown ability. International Journal of Control and Automation, 5(4), 93–102.

Kosko, B. (1993). Fuzzy thinking: The new science of fuzzy logic. Hyperion.

Lee, C.-C. (1990). Fuzzy logic in control systems: Fuzzy logic controller—Part I. IEEE Transactions on Systems, Man, and Cybernetics, 20(2), 404–418.

https://doi.org/10.1109/21.52551

Mehan, S. (2011). Introduction of traffic light controller with fuzzy control system. International Journal of Electronics & Communication Technology, 2(3), 119–122.

Nittymäki, J., & Pursula, M. (2000). Signal control using fuzzy logic. Transportation Research Record, 1727(1), 56–61.

https://doi.org/10.3141/1727-08

Pratama, F. F., & Fauzi, I. (2023). Perancangan Pengendalian dan Optimalisasi Lampu Lalu Lintas pada Persimpangan Jalan Muktisari Kebumen Menggunakan Algoritma Fuzzy Logic. Technology and Informatics Insight Journal, 2(1), 1-11.

Wibisono, M. G. (2025). Optimalisasi Desain Penerangan Jalan Umum (PJU) Akses Gudang PT Petrokimia Gresik Dengan Metode Fuzzy Logic. Jurnal Penelitian Ilmu dan Teknologi Komputer (JUPITER), 17(1), 255-236.

Pappis, C. P., & Mamdani, E. H. (1977). A fuzzy logic controller for traffic junctions. International Journal of Man–Machine Studies, 7(1), 1–13.

https://doi.org/10.1016/S0020-7373(77)80001-6

Pranevicius, H., & Kraujalis, T. (2012). Knowledge-based traffic signal control mode for signalized intersection. Transport, 27(3), 263–267.

https://doi.org/10.3846/16484142.2012.719838

Singh, H., Gupta, M. M., & Meitzler, T. (2013). Real-life applications of fuzzy logic. Advances in Fuzzy Systems, 2013, 1–3.

https://doi.org/10.1155/2013/581879

Teo, R. H., Wang, Q., Wang, J., & Lu, Y. (2011). Adaptive fuzzy signal control for congested intersections. Expert Systems with Applications, 38(12), 14652–14665.

https://doi.org/10.1016/j.eswa.2011.05.064

Yazdi, M., & Kahraman, C. (2018). Fuzzy logic applications in traffic and transportation systems. Applied Soft Computing, 72, 1091–1107.

https://doi.org/10.1016/j.asoc.2018.08.025

Manalu, J. P. (2023). Optimalisasi Waktu Nyala Lampu Hijau Menggunakan Fuzzy Logic Pada Persimpangan Jalan Sisingamangaraja-Jalan Turi Kota Medan.

Fachrul, K., & Sofiarani, A. (2019). Pendekatan Fuzzy Pada Kamera Cerdas Lampu Lalulintas. Sains, Aplikasi, Komputasi dan Teknologi Informasi, 1(1), 34-38.

Zhang, Y., & Wang, F.-Y. (2015). Dynamic traffic signal control using soft computing techniques: A survey. Information Sciences, 316, 67–89.

https://doi.org/10.1016/j.ins.2014.10.050

Li, X., Yu, G., & Zhang, Y. (2014). Traffic signal timing via fuzzy optimization approach for urban intersections. Procedia – Social and Behavioral Sciences, 138, 448–457.

https://doi.org/10.1016/j.sbspro.2014.07.232

Downloads

Published

22-01-2026

How to Cite

Elisa, N., Ira C, I. C., Verawati, S., Gracia M, A., & Orlan R, O. R. (2026). Design and Evaluation of an Adaptive Traffic Signal Control System Based on Mamdani Fuzzy Logic. Pascal: Journal of Computer Science and Informatics, 3(01), 1-6. https://jurnal.devitara.or.id/index.php/komputer/article/view/297

Similar Articles

1-10 of 17

You may also start an advanced similarity search for this article.