A Decision Support System for the Selection and Distribution of Superior Durian Seedlings to the Community Using the Decision Tree Method

Authors

  • Ardiya Kansya Danisuwara STMIK Kaputama Author
  • Hotler Manurung STMIK Kaputama Author
  • Magdalena Simanjuntak STMIK Kaputama Author

Keywords:

Decision Support System, Decision Tree, Superior Durian Seeds, Machine Learning, Scikit-learn., Python, Tkinter

Abstract

The durian fruit is an agricultural commodity with high economic value and strong demand both domestically and internationally. However, the success rate of durian cultivation in Indonesia remains relatively low, at approximately 30.3%. This is partly due to the limited experience of farmers in managing durian plantations and the absence of an objective system for selecting eligible recipients of superior seedlings. Inaccurate selection of seedling recipients can lead to low productivity, suboptimal fruit quality, and an imbalance between market supply and demand. To address these issues, this study proposes the development of a Decision Support System (DSS) for the selection of superior durian seedling recipients using the Decision Tree algorithm. The study identifies several factors influencing eligibility, including age, land area, land ownership, farming experience, socioeconomic status, number of plants, water availability, membership in farmer groups, regional location, and education level. Data from 300 respondents were collected and processed through several preprocessing stages, including categorical data encoding, numerical data binning, normalization, and the division of training and testing datasets. The Decision Tree model was developed using the Scikit-learn library in the Python programming language, with the Gini index as the splitting criterion. The experimental results indicate that the model achieved an accuracy of 85%, a precision of 90%, and a recall of 95% for the "Eligible" class, demonstrating the system’s effectiveness in accurately identifying qualified recipients. The system was implemented as a GUI-based desktop application using Tkinter, equipped with features for data input, eligibility prediction, recipient data management, and statistical visualization. The implementation of this system is expected to enhance objectivity, efficiency, and accountability in the distribution of superior durian seedlings, thereby contributing to increased productivity among durian farmers and promoting better market equilibrium.

References

Andriani, Anik. 2013. “Sistem Pendukung Keputusan Berbasis Decision Tree Dalam Pemberian Beasiswa (Studi Kasus: AMIK ‘BSI Yogyakarta’).” Seminar Nasional Teknologi Informasi dan Komunikasi 2013(Sentika): 163–68.

Anugerah, Widiansyah. 2023. “Apa Itu Bibit Unggul? Penjelasan Lengkap Mengenai Bibit Unggul Dan Keuntungannya.” 17 september.

Daqiqil Ibnu. 2021. Machine Learning : Teori , Studi Kasus Dan Implementasi Menggunakan Python. doi:10.5281/zenodo.5113507.

Dudes manulu, raegan surbakti saragih, paniel samputra sitorus. 2024. Pemograman Python Dengan GUI Tkinter.

Horti Indoensia. 2022. “KEBERHASILAN TANAM DURIAN DI INDONESIA BARU 30,3%.” Horti Indoensia. https://www.hortiindonesia.com/berita/keberhasilan tanam-durian-di-indonesia-baru-30-3.

Karyadiputra, Erfan, and Agus Setiawan. 2023. “Sistem Pendukung Keputusan Berbasis Decision Tree Algorithm Untuk Prediksi Penyakit Diabetes.” Media Informasi dan Teknologi 17(2023): 294–301. https://doi.org/10.24252/teknosains.v17i3.38383.

Latifah, Retnani, Emi Setia, and Priadhana Edi. 2019. “Model Decision Tree Untuk Prediksi Jadwal Kerja Menggunakan Scikit-Learn.”

Mahendra, Gede Surya. 2023. Sistem Pendukung Keputusan : Teori Dan Penerapannya Dalam Berbagai Metode.

Nainggolan, Lusiana, Iskandar Zulkarnain, and Sri Kusnasari. 2020. “Sistem Pendukug Keputusan Pemilihan Jenis Bibit Unggul Pada Tanaman Durian Varietas Matahari Dengan Menggunakan Metode Weighted Aggremented Sum Product Assesment (Waspas).” Jurnal CyberTech 3(3): 555–64.

Nasrulah, Asmaul Husna. 2021. “IMPLEMENTASI ALGORITMA DECISION TREE UNTUK KLASIFIKASI PRODUK LARIS.” 7(2): 45–51.

Nugroho, Muhammad Yogie. 2019. “SISTEM PENDUKUNG KEPUTUSAN BERBASIS WEB UNTUK DIAGNOSA PENYAKIT JANTUNG KORONER MENGGUNAKAN ALGORITMA MACHINE LEARNING HYBRID DECISION TREE DAN NAIVE BAYES.” : 1–23.

Purnamawati, Annida, Monikka Nur Winnarto, and Mely Mailasari. 2022. “ANALISIS CART ( CLASSIFICATION AND REGRESSION TREES ) UNTUK PREDIKSI PENGGUNA SEPEDA BERDASARKAN CUACA.” 16(1): 14–19.

Quinlan, J R. 2007. “Induction of Decision Trees.” : 81–106.

Rani, Reka Rama, Fajri Profesio Putra, and Elvi Rahmi. 2025. “Sistem Pendukung Keputusan Untuk Menentukan Bibit Sawit Unggul Menggunakan Metode Analytic Hierarchy Process ( AHP ).” 3: 14–27.

Susanto, Ferry, Prodi Teknik Informatika, Lampung Utara, Ade Sherly, Novita Sari, and Agus Salim. 2018. “Sistem Pendukung Keputusan Dalam Menentukan Kualitas Jambu Biji Unggulan Menggunakan Metode Weighted Product.” 01(03).

Triasanti, Dini. 2000. “Konsep Dasar Python.” : 1–6. Weiss, Ron. 2012. “Scikit-Learn : Machine Learning in Python Scikit-Learn : Machine Learning in Python.” (January).

Widiyati, Dwi Kinasih, Masna Wati, and Herman Santoso Pakpahan. 2018. “Penerapan Algoritma ID3 Decision Tree Pada Penentuan Penerima Program Bantuan Pemerintah Daerah Di Kabupaten Kutai Kartanegara.” Jurnal Rekayasa Teknologi Informasi (JURTI) 2(2): 125. doi:10.30872/jurti.v2i2.1864

Downloads

Published

10-10-2025

How to Cite

Danisuwara, A. K., Manurung, H. ., & Simanjuntak, M. . (2025). A Decision Support System for the Selection and Distribution of Superior Durian Seedlings to the Community Using the Decision Tree Method. Pascal: Journal of Computer Science and Informatics, 2(02), 128-136. https://jurnal.devitara.or.id/index.php/komputer/article/view/282