Decision Support System for Determining Effective Learning Strategies for Students Using the SMART Method
Keywords:
SMART, Decision Support System, learning strategies, academic achievementAbstract
Effective learning strategies are essential factors in improving students’ academic achievement. However, at SMP Negeri 2 Binjai, several challenges remain, including the low effectiveness of applied learning methods, the lack of adaptation to individual learning styles, and the limited use of academic data in supporting learning decisions. These issues were further exacerbated by the post-pandemic shift toward hybrid learning models, which has not been fully optimized. To address this problem, this study designed a Decision Support System (DSS) using the SMART (Simple Multi-Attribute Rating Technique) method to recommend suitable learning strategies for students. The system was developed through stages of requirement analysis, logical design of the SMART calculation, and the implementation of integrated multi-criteria processing. The results show that the system can provide objective and accurate learning strategy recommendations. From 32 students analyzed, 11 students (34.37%) were recommended to adopt E-learning, 7 students (21.87%) to use Blended Learning, and 14 students (43.75%) to apply Traditional Learning. The highest score of 1.00 was achieved by two students in the E-learning category, while the lowest score of 0.125 was recorded in the Traditional category. These findings confirm that the application of the SMART method in DSS is effective in helping teachers and students determine more adaptive and personalized learning strategies, thereby supporting the improvement of learning quality in schools.
References
Ahmad Heru Mujianto, Aldi Sawung Sajiyanto, & Hadi Sucipto. (2023). Implementasi Metode Simple Multi Attribute Rating Technique (Smart) Pada Sistem Informasi Penentuan Beasiswa Berbasis Website. Jurnal Informatika Teknologi Dan Sains (Jinteks), 5(2), 258–264. https://doi.org/10.51401/jinteks.v5i2.2633
Akbar, G. R., Rosyid, J. A., & Al Rasyid, M. H. (2023). Strategi belajar berbasis analisis psikologi dan penerapan antar generasi. Didaktik: Jurnal Ilmiah PGSD STKIP Subang, 9(3), 654–672. https://doi.org/10.36989/didaktik.v9i3.1557
Anamisa, Y. K. D. R. (2020). Sistem Informasi & Implementasi Untuk Pendukung Keputusan Studi Kasus : Sitem Rekomendasi. Media Nusa Creative, Malang.
Ayu Manik Dirgayusari, Nazaruddin Ahmad, Bagus Tri Mahardika, Musyrifah, Husna Gemasih. (2022). Basis Data. CV. Media Sains Indonesia, Bandung.
Dwi Remawati, H. W. (2021). Buku Ajar. Web JSP dengan database MySQL. LPPM Udinus, Semarang.
Jepriana, S. H. & I. W. (2020). Konsep Algoritme dan Aplikasinya dalam Bahasa Pemrograman C++. CV. Andi Offset, Yogyakarta.
kipmi.or.id. (2023). https://kipmi.or.id/kelebihan-dan-kekurangan-bahasa-php.html.
Lubis, M. H., Amin, M., Lubis, J. R., Irawan, F., Purnomo, N., & Tanjung, A. A. (2022). Sistem Pendukung Keputusan. CV Budi Utama.
Nurhayati. (2022). Teknik Ensemble Learning Untuk Peningkatan Performa Akurasi Model Prediksi (Seleksi Mahasiswa Penerima Beasiswa). Pascal Books, Tanggerang.
Puspita, I., Indarti, N., & Nurhayati, D. (2023). Pendekatan, Metode, Strategi Dan Model Pembejaran: Literature Review. Jurnal Euilibrium Nusantara, 2(1), 93–96. https://doi.org/10.56854/jeqn.v2i1.150
Rachmat Destriana, Syepry Maulana Husain, Nurdiana Handayani, A. T. P. S. (2021). Diagram UML Dalam Membuat Aplikasi Android Firebase "Studi Kasus Aplikasi Bank Sampah. Deepublish Publisher, Sleman.
Sihombing, J. (2022). Pembuatan Web Dinamis Dengan Php Dan MySQL. CV. Mitra Cendekia Media, Solok.
Suprihatin. (2021). Basis Data SMK/MAK Kelas XI. Gramedia Widiasarana indonesia, Jakarta.





