Application of Backpropagation Method to Predict Livestock Population in Langkat Regency

Authors

  • Victor Maruli Pakpahan STMIK Kaputama, Binjai, Indonesia Author

Keywords:

Backpropagation Method , Predict Livestock , Population

Abstract

Livestock has an important role in the structure of the rural economy, where small livestock is an ideal choice to support the local economy and ensure food security. In Lalat Regency, there is no accurate prediction system to find out the trend of small livestock populations in the future, both increasing and decreasing. To answer this need, this study uses the Artificial Neural Network (JST) technique with the Backpropagation method to predict the small livestock population in the region. This study develops a JST-based prediction system using available training data, training targets, and small livestock population test data. The prediction results for 23 sub-districts in 2023 show that in the first experiment, 18 sub-districts are in accordance with the prediction and 5 sub-districts are not in accordance with the prediction; In the second experiment, 17 sub-districts were compliant and 6 sub-districts were not compliant; And in the third experiment, 21 sub-districts were compliant and 2 sub-districts were not compliant. The prediction process was carried out with a target error of 0.00001, with each experiment using 20 iterations in the first experiment, as well as 4 iterations in the second and third experiments, and the training time was recorded for 00:00 seconds. This system was successfully developed using Matlab software, provides accurate prediction results of small livestock populations, and can be used by the Langkat Regency Agriculture and Food Security Office for better planning in the future.

References

Achmanu dan Muharlien, 2011. Ilmu Ternak Unggas. UB Press : Malang.

Ajeng, R. D. (2023). Rancang Bangun Sistem Elektronic Nose (E-nose) Berbasis Multi Sensor Menggunakan Jaringan Syaraf Tiruan (JST) Metode Backpropagation pada Sampel Uji Bahan Bakar Minyak (BBM).

Ajeng, R. D. (2023). Rancang Bangun Sistem Elektronic Nose (E-nose) Berbasis Multi Sensor Menggunakan Jaringan Syaraf Tiruan (JST) Metode Backpropagation pada Sampel Uji Bahan Bakar Minyak (BBM).

Badan Pusat Statistik Indonesia

Huda, M., & Kom, M. (2019). Algoritma Data Mining: Analisis Data Dengan Komputer. bisakimia.

Iqbal, M. (2009). Pengolahan Citra Digital Menggunakan Matlab.

Mubarokh, M. F., Nasir, M., & Komalasari, D. (2020). Jaringan Syaraf Tiruan Untuk Memprediksi Penjualan Pakaian Menggunakan Algoritma Backpropagation. Journal of Computer and Information Systems Ampera, 1(1), 29-43.

Muchamad, M. K. (Ed.). (2022). Pengantar Simulasi Sistem Komunikasi Digital Menggunakan Matlab. Syiah Kuala University Press.

Nurhakiki, J., & Yahfizham, Y. (2024). Studi Kepustakaan: Pengenalan 4 Algoritma Pada Pembelajaran Deep Learning Beserta Implikasinya. Pendekar: Jurnal Pendidikan Berkarakter, 2(1), 270-281.

Perbup Kab. Langkat No. 14 Tahun 2018

Pradana, D., Alghifari, M. L., Juna, M. F., & Palaguna, D. (2022). Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network. Indonesian Journal of Data and Science, 3(2), 55-60.

Pratama, A. S., Sari, S. M., Hj, M. F., Badwi, M., & Anshori, M. I. (2023). Pengaruh Artificial Intelligence, Big data dan otomatisasi terhadap kinerja SDM di Era digital. Jurnal Publikasi Ilmu Manajemen, 2(4), 108-123.

Putra, R. F., Mukhlis, I. R., Datya, A. I., Pipin, S. J., Reba, F., Al-Husaini, M., ... & Judijanto, L. (2024). Algoritma Pembelajaran Mesin: Dasar, Teknik, dan Aplikasi. PT. Sonpedia Publishing Indonesia.

Ridoi, M. (2018). Cara mudah membuat game edukasi dengan Construct 2: tutorial sederhana Construct 2.

Rifky, S., Kharisma, L. P. I., Afendi, H. A. R., Napitupulu, S., Ulina, M., Lestari, W. S., ... & Rizal, A. A. (2024). Artificial Intelligence: Teori dan Penerapan AI di Berbagai Bidang. PT. Sonpedia Publishing Indonesia.

Sari, N. D., & Seprianto, B. (2023). Perancangan UI Design Aplikasi Monitoring Tanaman Berbasis Mobile (Android). Instink: Inovasi Pendidikan, Teknologi Informasi dan Komputer, 2(2), 79-86.

Setiana, R., Siregar, R. A., Husaini, F., & Windarto, A. P. (2023). Analisis Metode Backpropagation Dalam Memprediksi Jumlah Produksi Daging Kambing di Indonesia. Journal of Computing and Informatics Research, 2(3), 97-108.

Sugiarti, Yuni. 2013. Analisa dan Perancangan UML. Yogyakarta: Graha Ilmu. Sujono, S., Mayasari, M. S., & Koloniawan, K. (2019). Prototipe aplikasi simpan pinjam pada koperasi darma karya Pangkalpinang Babel. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 8(1), 68-73.

Sumiati, M., Abdillah, R., & Cahyo, A. (2021). Pemodelan Uml Untuk Sistem Informasi Persewaan Alat Pesta. Jurnal Fasilkom, 11(2), 79-86.

Undang-undang (UU) Nomor 18 Tahun 2009 tentang Peternakan dan Kesehatan Hewan Pasal 1 Ayat 1

Wanto, A., Gunawan, I., Sumarno, S., & Nasution, Z. M. (2021). Prediksi Hasil Produksi Kelapa Sawit PTPN IV Bahjambi Menggunakan Algoritma Backpropagation. Journal of Computer System and Informatics (JoSYC), 2(3), 271-279.

Wanto, A., Naam, J., Yuhandri, Y., Windarto, A. P., & Mesran, M. (2020). Analisis Penurunan Gradien dengan Kombinasi Fungsi Aktivasi pada Algoritma JST untuk Pencarian Akurasi Terbaik. Jurnal Media Informatika Budidarma, 4(4), 1197-1205.

Yellyka, S. (2022). Jaringan Syaraf Tiruan Backpropagation Untuk Memprediksi Jumlah Produksi Roti Di Aroma Bakery. SkripsiKu-2022, 1(3).

Downloads

Published

10-10-2024

How to Cite

Pakpahan , V. M. . (2024). Application of Backpropagation Method to Predict Livestock Population in Langkat Regency. Pascal: Journal of Computer Science and Informatics, 2(01), 25-32. https://jurnal.devitara.or.id/index.php/komputer/article/view/116

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.