Application Of The Decision Tree Method As A Factor Causing Students To Drop Out (Case Study: SMK Tunas Pelita Binjai City)

Authors

  • I Gusti Prahmana STMIK Kaputama, Binjai, Indonesia Author

Keywords:

Decision Tree Method , Drop Out , Factor Causing Students, C4.5

Abstract

The problem of the phenomenon of dropping out of school for students at the Senior High School or Vocational Education level is increasingly widespread. In fact, education is a very important field to develop the quality of Human Resources (HR) for the country. Ayu et al said that one of the important sectors that directly contributes the most in developing the quality of Human Resources (HR) is the education sector. Meanwhile, SMK Tunas Pelita Binjai is one of the vocational high schools in Binjai City that also faces the problem of dropping out of school. Based on internal school data, in 2023 there are 32 students or around 5% of the total students at SMK Tunas Pelita Binjai who cannot complete their education until the end. This figure is quite high and is a serious concern for the school. Some of the factors such as students' interest in learning have decreased so much that they make students inactive or often alpha, parents with low levels of education tend to lack understanding and appreciation for the importance of formal education for their children's future, they may not have high aspirations for the achievement of children's education, economic impacts that are very binding on the family so that children prefer to work to help the family economy. Seeing the very complex problem of dropping out of school, a comprehensive and systematic approach is needed to analyze what factors are the causes. The application of the Decision Tree method in identifying the factors that cause school dropouts at SMK Tunas Pelita Binjai, is expected to produce new information that can be used as a basis for schools to design more effective strategies and interventions in preventing and reducing school dropout rates. The author uses the help of RapidMiner software to see the factors that cause students to drop out of school by using the C4.5 Decision Tree method to create a decision tree from existing student data. So that from the RapidMiner calculation process, it can be concluded that what are the factors that cause the student to drop out of school.

References

Anwar, S. N., Fatkhul Amin, & Nugroho, S. (2014). Desain Uml Aplikasi Navigasi Layanan Kesehatan Berbasis Android. Seminar Nasional Sistem Informasi Indonesia, (September), 250–254.

Apriyadi, A., Lubis, M. R., & Damanik, B. E. (2022). Penerapan Algoritma C5.0 Dalam Menentukan Tingkat Pemahaman Mahasiswa Terhadap Pembelajaran Daring. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 11(1), 11–20.

Assa, R., Kawung, E. J. R., & Lumintang, J. (2022). Faktor Penyebab Anak Putus Sekolah Di Desa Sonuo Kecamatan Bolangitang Barat Kabupaten Bolaang Mongondow Utara. Jurnal Ilmiah Society, 2(1), 1–12.

Ayu, Ni, Krisna Dewi1, Anjuman Zukhri1, Ketut Dunia2, dan Jurusan Pendidikan Ekonomi. (2014). “().” Tahun 4(1). www.cetak.kompas.com,.

Bachtiar, L., & Mahradianur, M. (2023). Analisis Data Mining Menggunakan Metode Algoritma C4.5 Menentukan Penerima Bantuan Langsung Tunai. Jurnal Informatika, 10(1), 28–36.

Bahri, S., & Lubis, A. (2020). Metode Klasifikasi Decision Tree Untuk Memprediksi Juara English Premier League. Jurnal Sintaksis, 2(1), 63–70.

Fatma, Yofi Lailatul, dan Naim Rochmawati. (2024). “Prediksi Siswa Putus Sekolah Menggunakan Algoritma Decision Tree C4.5.” Journal of Informatics and Computer Science 05.

GoodStats. (n.d.). Gender Gap di Indonesia, Angka Putus Sekolah Didominasi oleh Laki-Laki. diakses dari https://goodstats.id/article/gender-gap-di-indonesia-angka-putus-sekolah-didominasi-oleh-laki-laki-uLr22

Hidayat, A. N., Eka M, E. Y., Abdullah, F. M., Akbar, M., & Rosyani, P. (2021). Analisis Perkembangan Kecerdasan Buatan Dalam Industri Game. Jurnal Kreativitas Mahasiswa Informatika, 2(1), 118–120.

Hidayatuloh, M. A., Kartika, K. P., & Permadi, D. F. H. (2022). Implementasi Algoritma C4.5 Untuk Memprediksi Capaian Pembelajaran Daring (Studi Kasus Siswa MAN 3 Blitar). Jurnal Algoritme, 3(1), 33–47.

Nahjan, R., Heryana, N., & Apriade Voutama. (2023). Implementasi Rapidminer Dengan Metode Clustering K-Means Untuk Analisa Penjualan Pada Toko Oj Cell. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 101–104.

Nufus, N., Ariffin, D. M., Satyawan, A. S., Nugraha, R. A. S., Asysyakuur, M. I., Marlina, N. N. A., … Ema, E. (2021). Sistem Pendeteksi Pejalan Kaki Di Lingkungan Terbatas Berbasis SSD MobileNet V2 Dengan Menggunakan Gambar 360° Ternormalisasi. Prosiding Seminar Nasional Sains Teknologi Dan Inovasi Indonesia (SENASTINDO), 3(November), 123–134.

Nuraini, P., Tata Hardinata, J., & Pranayama Purba, Y. (2022). Penerapan Algoritma C4.5 Untuk Klasifikasi Pola Kepuasan Pelayanan E-KTP Di Kantor Camat Pematang Bandar. Resolusi : Rekayasa Teknik Informatika Dan Informasi, 2(3), 138–144.

Prasetyo, V. R., Lazuardi, H., Mulyono, A. A., & Lauw, C. (2021). Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(1), 8–17.

Raharjo, J. S. D., Damiyana, D., & Hidayatullah, M. (2016). Sistem Pakar Diagnosa Penyakit Lambung dengan Metode Forward Chaining Berbasis Android. Sisfotek Global, 6(2), 1–8.

Ramadhon, R. N., Ogi, A., Agung, A. P., Putra, R., Febrihartina, S. S., & Firdaus, U. (2024). Implementasi Algoritma Decision Tree untuk Klasifikasi Pelanggan Aktif atau Tidak Aktif pada Data Bank. Karimah Tauhid, 3(2), 1860–1874.

Rizal, R., Martanto, M., & Arie Wijaya, Y. (2022). Analisa Dataset Software Defined Network Intrusion Menggunakan Algoritma Deep Learning H2O. JATI (Jurnal Mahasiswa Teknik Informatika), 6(2), 747–757.

Salam, N. F. S., Manap Rifai, A., & Ali, H. (2021). Faktor Penerapan Disiplin Kerja: Kesadaran Diri, Motivasi, Lingkungan (Suatu Kajian Studi Literatur Manajemen Pendidikan Dan Ilmu Sosial). Jurnal Manajemen Pendidikan Dan Ilmu Sosial, 2(1), 487–508.

Setio, P. B. N., Saputro, D. R. S., & Bowo Winarno. (2020). Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5. PRISMA, Prosiding Seminar Nasional Matematika, 3, 64–71.

Suryasari, Callista, A., & Sari, J. (2012). Rancangan Aplikasi Customer Service Pada PT. Lancar Makmur Bersama. Jurnal Sistem Informasi (JSI), 4(2), 468–476.

Wijaya, A. E., Swastika, W., & Kelana, O. H. (2021). Implementasi Transfer Learning Pada Convolutional Neural Network Untuk Diagnosis Covid-19 Dan Pneumonia Pada Citra X-Ray. Sainsbertek Jurnal Ilmiah Sains & Teknologi, 2(1), 10–15.

Yahya, & Mahpuz. (2019). Penggunaan Algoritma K-Means Untuk Menganalisis Pelanggan Potensial Pada Dealer SPS Motor Honda Lombok Timur Nusa Tenggara Barat. Jurnal Informatika Dan Teknologi, 2(2), 1–19.

Yulia, E. R. (2017). Perancangan Program Penjualan Perhiasan Emas Pada Toko Mas Dan Permata Renny Medan. Evolusi : Jurnal Sains Dan Manajemen, 5(2).

Yulianeu, A., & Oktamala, R. (2022). Sistem Informasi Geografis Trayek Angkutan Umum Di Kota Tasikmalaya Berbasis Web. JUTEKIN (Jurnal Teknik Informatika), 10(2).

Yunus, M., Ramadhan, H., Aji, D. R., & Yulianto, A. (2021). Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indon[1] M. Yunus, H. Ramadhan, D. R. Aji, and A. Yulianto, “Penerapan Metode Data Mining C4.5 Untuk Pemilihan Penerima Kartu Indonesia Pintar (KIP),” Paradig. - J. Komput. dan Inform., vol. Paradigma - Jurnal Komputer Dan Informatika, 23(2).

Downloads

Published

10-10-2024

How to Cite

Prahmana, I. G. (2024). Application Of The Decision Tree Method As A Factor Causing Students To Drop Out (Case Study: SMK Tunas Pelita Binjai City). Pascal: Journal of Computer Science and Informatics, 2(01), 17-24. https://jurnal.devitara.or.id/index.php/komputer/article/view/114

Similar Articles

21-27 of 27

You may also start an advanced similarity search for this article.