Application of Bayes' Theorem Method to Diagnose Miscarriage in Pregnant Women
Keywords:
Expert system, Miscarriage, Pregnant Women, Bayes' Theorem MethodAbstract
The expert system for diagnosing the causes of miscarriage in pregnant women is an expert system designed as a tool to diagnose the type of food that causes miscarriage. Computer programs intended as a provider of tools in solving problems in certain areas of specialization such as miscarriage problems in pregnant women. This knowledge is obtained from various sources including books and the internet related to the causes of miscarriages. The knowledge base is arranged in such a way into a database with several tables of food types and tables of effects to facilitate the performance of the system in drawing conclusions in this expert system using Bayes' theorem. This expert system will display a selection of symptoms that can be selected by the user, where each effect selection will read the user to the next effect choice until the final result is obtained. In the final result, the expert system will display a selection of user effects, types of foods that cause miscarriage, and solutions.
References
Kristanto, Andi, “Kecerdasan Buatan”, Graha Ilmu, 2009.
Kusrini, “Sistem Pakar Teori Dan Aplikasi”, Andi, Yogjakarta, 2006.
Handayani, L dan Sutikno, T. “Sistem Pakar untuk Diagnosis Penyakit THT Berbasis Web dengan “e2gLite Expert System Shell”, 2008. from http://www.stikom.edu/julianto/tag/diagnosa/
Suryawan, I. G. T., Arimbawa, I. K. S., & Sudipa, I. G. I. (2023). Implementation of Naive Bayes Method for Granting Fisherman Business Credit. Jurnal Info Sains: Informatika dan Sains, 13(01), 24-32.
Khamzah, Nur Siti, “Pantangan Keras Ibu Hamil”, Flashbooks, Jogjakarta, 2014.
Durkin, J. “Expert System Design and Development. Prentice Hall International Inc. New Jersey”, 1994.
Gandhis Ulta Abriania, “Implementasi Metode Semantic Similarity Untuk Pengukuran Kemiripan Antar Kalimat”, ILKOMNIKA, Vol. 1, No. 2
Sapriatin, B., & Sianturi, F. A. (2021). Penerapan Teorema Bayes Mendeteksi Stunting pada Balita. Jurnal Media Informatika, 3(1), 24-37.
Sutojo,T, “Kecerdasan Buatan”, Andi, Yogyakarta, 2011
Sapriatin, B., & Sianturi, F. A. (2021). Penerapan Teorema Bayes Mendeteksi Stunting pada Balita. Jurnal Media Informatika, 3(1), 24-37.
Yanti, Y. (2018). Sistem Pakar Mendiagnosa Penyakit Kucing Persia dengan Metode Teorema Bayes. Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), 1(2), 15-24.
Puji Sari Ramadhan, “Metode Sistem Pakar”, Penerbit Uwais Inspirasi Indonesia
Irwan Sapta Permana, et.al, 2018, “Sistem Pakar Untuk Mendiagnosa Penyakit Kulit dengan Metode Forward Chaining”, Jurnal Jumantaka, E-ISSN : 2613- 9146
Utami, N. W., Purnama, I. N., & Prayoga, I. M. A. (2024). Sentiment Analysis System Of Bali Tourism Using Naive Bayes Algorithm And Web Framework. Jurnal Info Sains: Informatika dan Sains, 14(03), 275-282.
Aprilia Manganti, at.al, 2021, “Sistem Pakar diagnosa Penyebab Keguguran Pada Ibu Hamil Menggunakan Metode Bayes”, Jurnal Sistem Informasi dan Sains Teknologi, ISSN : 2684-8260
Nadya Paramitha, 2019, “Penerapan Teorema Bayes Untuk Mendiagnosis Penyakit Pada Ibu Hamil Berbasis Android”, Jurnal Informatika, E-ISSN : 2528-2247
Sri Winiarti, 2022, “Pemanfaatan Teorema Bayes Dalam Penentuan Penyakit THT, Jurnal Informatika”, ISSN : 1978-0524
Sianturi, E. E., Nainggolan, S. G., & Rajagukguk, D. M. (2019, December). Sistem Informasi Penjualan Barang Pada Toko Kanaya Jepara Berbasis VB. NET. In SINTAKS (Seminar Nasional Teknologi Informasi Komputer dan Sains 2019) (Vol. 1, No. 1, pp. 850-854).
Zulham, M., Saripurna, D., & Siambaton, M. Z. (2023). Aplikasi Diagnosa Penyakit Hepatitis dengan Menggunakan Metode Teorema Bayes dan Certainty Factor. Blend Sains Jurnal Teknik, 2(1), 1-15.